Schedule
* All times are based on Canada/Eastern EST.
7:00 AM
Canada/Eastern
9:30 AM
Canada/Eastern
10:20 AM
Canada/Eastern
11:30 AM
Canada/Eastern
Dr. Matilde Lalin - Université de Montréal
Titre: Non-annulation de fonctions L : une histoire pleine de caractère Résumé: La fonction zêta de Riemann joue un rôle fondamental dans notre compréhension des nombres premiers. Dans cette présentation, nous découvrirons certaines de ses propriétés étonnantes, ainsi que celles d'autres fonctions similaires appelées fonctions L de Dirichlet. Selon une conjecture de Chowla, ces fonctions ne devraient pas s'annuler en un point particulier qu’on appelle le centre de la bande critique. Nous expliquerons certains résultats récents qui montrent que, pour des fonctions L associées à des caractères d’un ordre donné, une proportion positive ne s’annule pas à ce point. Ces résultats nous rapprochent un peu plus de la compréhension fine du comportement des fonctions L.
12:30 PM
Canada/Eastern
2 parallel sessions1:30 PM
Canada/Eastern
2:20 PM
Canada/Eastern
3:40 PM
Canada/Eastern
4:30 PM
Canada/Eastern
Dr. Marta Kobiela - McGill University
Title: “What is a polygon?”: Exploring the Teaching of Mathematical Definitions Abstract: Traditional approaches to teaching definitions tend to focus on memorization, often resulting in fragile understanding for students. How might we instead teach students to reason about mathematical definitions and author mathematical definitions? In this talk, I share my research focused on examining this question within the domain of geometry. I first problematize traditional approaches to the teaching of definitions, drawing upon research in education and philosophy of mathematics to show how traditional approaches limit opportunities for students to engage in ways of thinking that are important to the discipline of mathematics. Based on results from classroom studies with elementary school students and university prospective elementary teachers, I argue for an alternate approach to the teaching of mathematical definitions - one focused on definitional reasoning. When students engage in definitional reasoning, they make sense of definitions, their properties, and examples and non-examples. Through this research, my collaborators and I have developed teaching strategies that can be used within elementary, secondary, or university mathematics classrooms. Through these approaches, we aim to empower students to develop deeper understanding of concepts, greater mathematical agency, and a love of mathematics.