Opening
Coffee and badge distribution at reception
* All times are based on Canada/Eastern EST.
Canada/Eastern
Mechanometabolism: The intersection of mechanobiology and cellular metabolism in cancer During solid tumor progression, cells undergo mechanical and metabolic changes that help to fuel metastasis. To move, cells must utilize ATP to fuel cellular contractility and the forces that sustain migration, however very little is known about how the metabolic state of a cell affects its ability to migrate and vice versa. In this talk, I will describe my lab’s efforts to understand the forces driving cell movements in the tumor microenvironment and the energy required for movement. Combining tissue engineering approaches, mouse models, and patient samples, we create and validate in vitro systems to understand how cells navigate the tumor stroma environment with the goal of identifying novel targets of cancer metastasis. Microfabrication and native biomaterials are used to build mimics of the paths created and taken by cells during metastasis. Using these platforms, we have described a role for a balance between cellular energetics, cell and matrix stiffness, and confinement in determining migration behavior. Moreover, we have extended this work into investigating the intersection of diabetes and the diabetic tissue microenvironment with tumor progression, showing that mechanical changes in the tissue due to diabetes can promote cancer. Overall, our work has demonstrated key mechanical drivers of metastasis within the tissue microenvironment.
Canada/Eastern